Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Discov ; 14(4): 663-668, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38571421

RESUMO

SUMMARY: We are building the world's first Virtual Child-a computer model of normal and cancerous human development at the level of each individual cell. The Virtual Child will "develop cancer" that we will subject to unlimited virtual clinical trials that pinpoint, predict, and prioritize potential new treatments, bringing forward the day when no child dies of cancer, giving each one the opportunity to lead a full and healthy life.


Assuntos
Neoplasias , Humanos , Neoplasias/genética
2.
Sci Adv ; 10(12): eadn4649, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517960

RESUMO

Genomic rearrangements are a hallmark of most childhood tumors, including medulloblastoma, one of the most common brain tumors in children, but their causes remain largely unknown. Here, we show that PiggyBac transposable element derived 5 (Pgbd5) promotes tumor development in multiple developmentally accurate mouse models of Sonic Hedgehog (SHH) medulloblastoma. Most Pgbd5-deficient mice do not develop tumors, while maintaining normal cerebellar development. Ectopic activation of SHH signaling is sufficient to enforce cerebellar granule cell progenitor-like cell states, which exhibit Pgbd5-dependent expression of distinct DNA repair and neurodevelopmental factors. Mouse medulloblastomas expressing Pgbd5 have increased numbers of somatic structural DNA rearrangements, some of which carry PGBD5-specific sequences at their breakpoints. Similar sequence breakpoints recurrently affect somatic DNA rearrangements of known tumor suppressors and oncogenes in medulloblastomas in 329 children. This identifies PGBD5 as a medulloblastoma mutator and provides a genetic mechanism for the generation of oncogenic DNA rearrangements in childhood cancer.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Humanos , Criança , Animais , Camundongos , Meduloblastoma/genética , Transposases/genética , Transposases/metabolismo , Proteínas Hedgehog/metabolismo , Fatores de Transcrição/genética , Mutagênese , Neoplasias Cerebelares/genética
3.
Cell Rep ; 43(4): 113988, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38517886

RESUMO

The basal breast cancer subtype is enriched for triple-negative breast cancer (TNBC) and displays consistent large chromosomal deletions. Here, we characterize evolution and maintenance of chromosome 4p (chr4p) loss in basal breast cancer. Analysis of The Cancer Genome Atlas data shows recurrent deletion of chr4p in basal breast cancer. Phylogenetic analysis of a panel of 23 primary tumor/patient-derived xenograft basal breast cancers reveals early evolution of chr4p deletion. Mechanistically we show that chr4p loss is associated with enhanced proliferation. Gene function studies identify an unknown gene, C4orf19, within chr4p, which suppresses proliferation when overexpressed-a member of the PDCD10-GCKIII kinase module we name PGCKA1. Genome-wide pooled overexpression screens using a barcoded library of human open reading frames identify chromosomal regions, including chr4p, that suppress proliferation when overexpressed in a context-dependent manner, implicating network interactions. Together, these results shed light on the early emergence of complex aneuploid karyotypes involving chr4p and adaptive landscapes shaping breast cancer genomes.


Assuntos
Neoplasias da Mama , Redes Reguladoras de Genes , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Animais , Camundongos , Cromossomos Humanos Par 4/genética , Proliferação de Células/genética , Aberrações Cromossômicas , Linhagem Celular Tumoral , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
4.
Redox Biol ; 70: 103028, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38211442

RESUMO

Significant efforts have focused on identifying targetable genetic drivers that support the growth of solid tumors and/or increase metastatic ability. During tumor development and progression to metastatic disease, physiological and pharmacological selective pressures influence parallel adaptive strategies within cancer cell sub-populations. Such adaptations allow cancer cells to withstand these stressful microenvironments. This Darwinian model of stress adaptation often prevents durable clinical responses and influences the emergence of aggressive cancers with increased metastatic fitness. However, the mechanisms contributing to such adaptive stress responses are poorly understood. We now demonstrate that the p66ShcA redox protein, itself a ROS inducer, is essential for survival in response to physiological stressors, including anchorage independence and nutrient deprivation, in the context of poor outcome breast cancers. Mechanistically, we show that p66ShcA promotes both glucose and glutamine metabolic reprogramming in breast cancer cells, to increase their capacity to engage catabolic metabolism and support glutathione synthesis. In doing so, chronic p66ShcA exposure contributes to adaptive stress responses, providing breast cancer cells with sufficient ATP and redox balance needed to withstand such transient stressed states. Our studies demonstrate that p66ShcA functionally contributes to the maintenance of aggressive phenotypes and the emergence of metastatic disease by forcing breast tumors to adapt to chronic and moderately elevated levels of oxidative stress.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Proteínas Adaptadoras da Sinalização Shc/genética , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Neoplasias da Mama/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo , Estresse Oxidativo/fisiologia , Fenótipo , Linhagem Celular Tumoral , Microambiente Tumoral
5.
Mol Cell Biol ; 44(1): 1-16, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38270191

RESUMO

The ubiquitin proteasome system performs the covalent attachment of lysine 48-linked polyubiquitin chains to substrate proteins, thereby targeting them for degradation, while deubiquitylating enzymes (DUBs) reverse this process. This posttranslational modification regulates key features both of innate and adaptative immunity, including antigen presentation, protein homeostasis and signal transduction. Here we show that loss of one of the most highly expressed DUBs, Otub1, results in changes in murine splenic B cell subsets, leading to a significant increase in marginal zone and transitional B cells and a concomitant decrease in follicular B cells. We demonstrate that Otub1 interacts with the γ-subunit of the heterotrimeric G protein, Gng2, and modulates its ubiquitylation status, thereby controlling Gng2 stability. Proximal mapping of Gng2 revealed an enrichment in partners associated with chemokine signaling, actin cytoskeleton and cell migration. In line with these findings, we show that Otub1-deficient B cells exhibit greater Ca2+ mobilization, F-actin polymerization and chemotactic responsiveness to Cxcl12, Cxcl13 and S1P in vitro, which manifests in vivo as altered localization of B cells within the spleen. Together, our data establishes Otub1 as a novel regulator of G-protein coupled receptor signaling in B cells, regulating their differentiation and positioning in the spleen.


Assuntos
Quimiotaxia de Leucócito , Enzimas Desubiquitinantes , Baço , Ubiquitina , Animais , Camundongos , Enzimas Desubiquitinantes/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais , Baço/metabolismo , Ubiquitina/metabolismo , Ubiquitinação , Cisteína Endopeptidases/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Linfócitos B/metabolismo , Quimiotaxia de Leucócito/genética
6.
bioRxiv ; 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38116029

RESUMO

Polycomb Repressive Complex 2 (PRC2)-mediated histone H3K27 tri-methylation (H3K27me3) recruits canonical PRC1 (cPRC1) to maintain heterochromatin. In early development, polycomb-regulated genes are connected through long-range 3D interactions which resolve upon differentiation. Here, we report that polycomb looping is controlled by H3K27me3 spreading and regulates target gene silencing and cell fate specification. Using glioma-derived H3 Lys-27-Met (H3K27M) mutations as tools to restrict H3K27me3 deposition, we show that H3K27me3 confinement concentrates the chromatin pool of cPRC1, resulting in heightened 3D interactions mirroring chromatin architecture of pluripotency, and stringent gene repression that maintains cells in progenitor states to facilitate tumor development. Conversely, H3K27me3 spread in pluripotent stem cells, following neural differentiation or loss of the H3K36 methyltransferase NSD1, dilutes cPRC1 concentration and dissolves polycomb loops. These results identify the regulatory principles and disease implications of polycomb looping and nominate histone modification-guided distribution of reader complexes as an important mechanism for nuclear compartment organization. Highlights: The confinement of H3K27me3 at PRC2 nucleation sites without its spreading correlates with increased 3D chromatin interactions.The H3K27M oncohistone concentrates canonical PRC1 that anchors chromatin loop interactions in gliomas, silencing developmental programs.Stem and progenitor cells require factors promoting H3K27me3 confinement, including H3K36me2, to maintain cPRC1 loop architecture.The cPRC1-H3K27me3 interaction is a targetable driver of aberrant self-renewal in tumor cells.

7.
Genes Dev ; 37(15-16): 760-777, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37704377

RESUMO

The mRNA 3' poly(A) tail plays a critical role in regulating both mRNA translation and turnover. It is bound by the cytoplasmic poly(A) binding protein (PABPC), an evolutionarily conserved protein that can interact with translation factors and mRNA decay machineries to regulate gene expression. Mammalian PABPC1, the prototypical PABPC, is expressed in most tissues and interacts with eukaryotic translation initiation factor 4G (eIF4G) to stimulate translation in specific contexts. In this study, we uncovered a new mammalian PABPC, which we named neural PABP (neuPABP), as it is predominantly expressed in the brain. neuPABP maintains a unique architecture as compared with other PABPCs, containing only two RNA recognition motifs (RRMs) and maintaining a unique N-terminal domain of unknown function. neuPABP expression is activated in neurons as they mature during synaptogenesis, where neuPABP localizes to the soma and postsynaptic densities. neuPABP interacts with the noncoding RNA BC1, as well as mRNAs coding for ribosomal and mitochondrial proteins. However, in contrast to PABPC1, neuPABP does not associate with actively translating mRNAs in the brain. In keeping with this, we show that neuPABP has evolved such that it does not bind eIF4G and as a result fails to support protein synthesis in vitro. Taken together, these results indicate that mammals have expanded their PABPC repertoire in the brain and propose that neuPABP may support the translational repression of select mRNAs.


Assuntos
Fator de Iniciação Eucariótico 4G , Proteínas de Ligação a Poli(A) , Animais , Proteínas de Ligação a Poli(A)/genética , Neurônios , Encéfalo , Mamíferos
8.
J Exp Med ; 220(9)2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37310381

RESUMO

Positively selected germinal center B cells (GCBC) can either resume proliferation and somatic hypermutation or differentiate. The mechanisms dictating these alternative cell fates are incompletely understood. We show that the protein arginine methyltransferase 1 (Prmt1) is upregulated in murine GCBC by Myc and mTORC-dependent signaling after positive selection. Deleting Prmt1 in activated B cells compromises antibody affinity maturation by hampering proliferation and GCBC light zone to dark zone cycling. Prmt1 deficiency also results in enhanced memory B cell generation and plasma cell differentiation, albeit the quality of these cells is compromised by the GCBC defects. We further demonstrate that Prmt1 intrinsically limits plasma cell differentiation, a function co-opted by B cell lymphoma (BCL) cells. Consistently, PRMT1 expression in BCL correlates with poor disease outcome, depends on MYC and mTORC1 activity, is required for cell proliferation, and prevents differentiation. Collectively, these data identify PRMT1 as a determinant of normal and cancerous mature B cell proliferation and differentiation balance.


Assuntos
Linfócitos B , Proteína-Arginina N-Metiltransferases , Animais , Camundongos , Afinidade de Anticorpos , Diferenciação Celular , Centro Germinativo , Proteína-Arginina N-Metiltransferases/genética , Proliferação de Células
9.
J Cell Sci ; 136(13)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37313743

RESUMO

The genetic alterations contributing to migration proficiency, a phenotypic hallmark of metastatic cells required for colonizing distant organs, remain poorly defined. Here, we used single-cell magneto-optical capture (scMOCa) to isolate fast cells from heterogeneous human breast cancer cell populations, based on their migratory ability alone. We show that captured fast cell subpopulations retain higher migration speed and focal adhesion dynamics over many generations as a result of a motility-related transcriptomic profile. Upregulated genes in isolated fast cells encoded integrin subunits, proto-cadherins and numerous other genes associated with cell migration. Dysregulation of several of these genes correlates with poor survival outcomes in people with breast cancer, and primary tumors established from fast cells generated a higher number of circulating tumor cells and soft tissue metastases in pre-clinical mouse models. Subpopulations of cells selected for a highly migratory phenotype demonstrated an increased fitness for metastasis.


Assuntos
Neoplasias da Mama , Células Neoplásicas Circulantes , Animais , Camundongos , Humanos , Feminino , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Células Neoplásicas Circulantes/patologia , Movimento Celular/genética , Caderinas , Metástase Neoplásica
10.
Cancer Discov ; 13(7): 1592-1615, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37011011

RESUMO

Pediatric high-grade gliomas (pHGG) are lethal, incurable brain tumors frequently driven by clonal mutations in histone genes. They often harbor a range of additional genetic alterations that correlate with different ages, anatomic locations, and tumor subtypes. We developed models representing 16 pHGG subtypes driven by different combinations of alterations targeted to specific brain regions. Tumors developed with varying latencies and cell lines derived from these models engrafted in syngeneic, immunocompetent mice with high penetrance. Targeted drug screening revealed unexpected selective vulnerabilities-H3.3G34R/PDGFRAC235Y to FGFR inhibition, H3.3K27M/PDGFRAWT to PDGFRA inhibition, and H3.3K27M/PDGFRAWT and H3.3K27M/PPM1DΔC/PIK3CAE545K to combined inhibition of MEK and PIK3CA. Moreover, H3.3K27M tumors with PIK3CA, NF1, and FGFR1 mutations were more invasive and harbored distinct additional phenotypes, such as exophytic spread, cranial nerve invasion, and spinal dissemination. Collectively, these models reveal that different partner alterations produce distinct effects on pHGG cellular composition, latency, invasiveness, and treatment sensitivity. SIGNIFICANCE: Histone-mutant pediatric gliomas are a highly heterogeneous tumor entity. Different histone mutations correlate with different ages of onset, survival outcomes, brain regions, and partner alterations. We have developed models of histone-mutant gliomas that reflect this anatomic and genetic heterogeneity and provide evidence of subtype-specific biology and therapeutic targeting. See related commentary by Lubanszky and Hawkins, p. 1516. This article is highlighted in the In This Issue feature, p. 1501.


Assuntos
Neoplasias Encefálicas , Glioma , Animais , Camundongos , Histonas/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioma/tratamento farmacológico , Glioma/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Encéfalo/patologia , Mutação
11.
Cell ; 186(6): 1162-1178.e20, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36931244

RESUMO

Germline histone H3.3 amino acid substitutions, including H3.3G34R/V, cause severe neurodevelopmental syndromes. To understand how these mutations impact brain development, we generated H3.3G34R/V/W knock-in mice and identified strikingly distinct developmental defects for each mutation. H3.3G34R-mutants exhibited progressive microcephaly and neurodegeneration, with abnormal accumulation of disease-associated microglia and concurrent neuronal depletion. G34R severely decreased H3K36me2 on the mutant H3.3 tail, impairing recruitment of DNA methyltransferase DNMT3A and its redistribution on chromatin. These changes were concurrent with sustained expression of complement and other innate immune genes possibly through loss of non-CG (CH) methylation and silencing of neuronal gene promoters through aberrant CG methylation. Complement expression in G34R brains may lead to neuroinflammation possibly accounting for progressive neurodegeneration. Our study reveals that H3.3G34-substitutions have differential impact on the epigenome, which underlie the diverse phenotypes observed, and uncovers potential roles for H3K36me2 and DNMT3A-dependent CH-methylation in modulating synaptic pruning and neuroinflammation in post-natal brains.


Assuntos
DNA Metiltransferase 3A , Histonas , Animais , Camundongos , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA/genética , Metilases de Modificação do DNA/genética , Histonas/metabolismo , Doenças Neuroinflamatórias
12.
Toxicol Sci ; 192(1): 83-96, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36617169

RESUMO

Arsenic exposure is correlated with atherosclerosis in epidemiological studies and in animal models. We have previously shown that arsenic exposure enhanced the atherosclerotic plaque size, increased the plaque lipid content, and decreased the plaque smooth muscle cell and collagen contents in the apolipoprotein E knockout (apoE-/-) mice. However, the percentage of plaque-resident macrophages, the primary drivers of atherosclerosis remained unchanged. Therefore, we hypothesized that although arsenic does not change the quantity of macrophages, it alters the macrophage transcriptome towards a proatherogenic state. To test this hypothesis, we used bone marrow-derived macrophages, polarized them to either interferon-γ (IFN-É£) stimulated, proinflammatory or interleukin-4 (IL-4) stimulated, alternatively activated macrophages in the presence or absence of 0.67 µM (50 ppb) arsenic and performed RNA sequencing. Arsenic exposure altered the gene expression of the macrophages in a subtype-specific manner. Most differentially expressed genes (88%) were altered specifically in either IFN-É£- or IL-4-stimulated macrophages, whereas in the remaining 12% of genes that changed in both cell types, did so in opposite directions. In IL-4-stimulated macrophages, arsenic significantly downregulated the genes involved in cholesterol biosynthesis and the chemokines CCL17/CCL22, whereas in IFN-É£-stimulated macrophages, the genes associated with the liver X receptor (LXR) pathway were downregulated by arsenic. Using a bone marrow transplant experiment, we validated that the deletion of LXRα from the hematopoietic compartment rescued arsenic-enhanced atherosclerosis in the apoE-/- mouse model. Together, these data suggest that arsenic modulates subtype-specific transcriptomic changes in macrophages and further emphasize the need to define macrophage heterogeneity in atherosclerotic plaques in order to evaluate the proatherogenic role of arsenic.


Assuntos
Arsênio , Aterosclerose , Placa Aterosclerótica , Animais , Camundongos , Arsênio/metabolismo , Interferon gama/genética , Interferon gama/metabolismo , Interleucina-4/genética , Interleucina-4/metabolismo , Camundongos Knockout , Aterosclerose/induzido quimicamente , Aterosclerose/genética , Aterosclerose/metabolismo , Placa Aterosclerótica/metabolismo , Macrófagos/metabolismo , Expressão Gênica , Apolipoproteínas E/genética , Camundongos Endogâmicos C57BL
13.
Nat Genet ; 54(12): 1865-1880, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36471070

RESUMO

Canonical (H3.1/H3.2) and noncanonical (H3.3) histone 3 K27M-mutant gliomas have unique spatiotemporal distributions, partner alterations and molecular profiles. The contribution of the cell of origin to these differences has been challenging to uncouple from the oncogenic reprogramming induced by the mutation. Here, we perform an integrated analysis of 116 tumors, including single-cell transcriptome and chromatin accessibility, 3D chromatin architecture and epigenomic profiles, and show that K27M-mutant gliomas faithfully maintain chromatin configuration at developmental genes consistent with anatomically distinct oligodendrocyte precursor cells (OPCs). H3.3K27M thalamic gliomas map to prosomere 2-derived lineages. In turn, H3.1K27M ACVR1-mutant pontine gliomas uniformly mirror early ventral NKX6-1+/SHH-dependent brainstem OPCs, whereas H3.3K27M gliomas frequently resemble dorsal PAX3+/BMP-dependent progenitors. Our data suggest a context-specific vulnerability in H3.1K27M-mutant SHH-dependent ventral OPCs, which rely on acquisition of ACVR1 mutations to drive aberrant BMP signaling required for oncogenesis. The unifying action of K27M mutations is to restrict H3K27me3 at PRC2 landing sites, whereas other epigenetic changes are mainly contingent on the cell of origin chromatin state and cycling rate.


Assuntos
Cromatina , Epigenômica , Linhagem da Célula/genética , Encéfalo
14.
BMC Cancer ; 22(1): 1297, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36503484

RESUMO

BACKGROUND: Juvenile Pilocytic Astrocytomas (JPAs) are one of the most common pediatric brain tumors, and they are driven by aberrant activation of the mitogen-activated protein kinase (MAPK) signaling pathway. RAF-fusions are the most common genetic alterations identified in JPAs, with the prototypical KIAA1549-BRAF fusion leading to loss of BRAF's auto-inhibitory domain and subsequent constitutive kinase activation. JPAs are highly vascular and show pervasive immune infiltration, which can lead to low tumor cell purity in clinical samples. This can result in gene fusions that are difficult to detect with conventional omics approaches including RNA-Seq. METHODS: To this effect, we applied RNA-Seq as well as linked-read whole-genome sequencing and in situ Hi-C as new approaches to detect and characterize low-frequency gene fusions at the genomic, transcriptomic and spatial level. RESULTS: Integration of these datasets allowed the identification and detailed characterization of two novel BRAF fusion partners, PTPRZ1 and TOP2B, in addition to the canonical fusion with partner KIAA1549. Additionally, our Hi-C datasets enabled investigations of 3D genome architecture in JPAs which showed a high level of correlation in 3D compartment annotations between JPAs compared to other pediatric tumors, and high similarity to normal adult astrocytes. We detected interactions between BRAF and its fusion partners exclusively in tumor samples containing BRAF fusions. CONCLUSIONS: We demonstrate the power of integrating multi-omic datasets to identify low frequency fusions and characterize the JPA genome at high resolution. We suggest that linked-reads and Hi-C could be used in clinic for the detection and characterization of JPAs.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Criança , Adulto , Humanos , Multiômica , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas de Fusão Oncogênica/genética , Astrocitoma/patologia , Neoplasias Encefálicas/patologia , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores
15.
Proc Natl Acad Sci U S A ; 119(36): e2203452119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037342

RESUMO

The contribution of deregulated chromatin architecture, including topologically associated domains (TADs), to cancer progression remains ambiguous. CCCTC-binding factor (CTCF) is a central regulator of higher-order chromatin structure that undergoes copy number loss in over half of all breast cancers, but the impact of this defect on epigenetic programming and chromatin architecture remains unclear. We find that under physiological conditions, CTCF organizes subTADs to limit the expression of oncogenic pathways, including phosphatidylinositol 3-kinase (PI3K) and cell adhesion networks. Loss of a single CTCF allele potentiates cell invasion through compromised chromatin insulation and a reorganization of chromatin architecture and histone programming that facilitates de novo promoter-enhancer contacts. However, this change in the higher-order chromatin landscape leads to a vulnerability to inhibitors of mTOR. These data support a model whereby subTAD reorganization drives both modification of histones at de novo enhancer-promoter contacts and transcriptional up-regulation of oncogenic transcriptional networks.


Assuntos
Montagem e Desmontagem da Cromatina , Regulação Neoplásica da Expressão Gênica , Invasividade Neoplásica , Fator de Ligação a CCCTC/metabolismo , Carcinogênese/genética , Cromatina/genética , Cromatina/metabolismo , Humanos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Regiões Promotoras Genéticas
16.
Nat Cancer ; 3(8): 994-1011, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35788723

RESUMO

We analyzed the contributions of structural variants (SVs) to gliomagenesis across 179 pediatric high-grade gliomas (pHGGs). The most recurrent SVs targeted MYC isoforms and receptor tyrosine kinases (RTKs), including an SV amplifying a MYC enhancer in 12% of diffuse midline gliomas (DMG), indicating an underappreciated role for MYC in pHGG. SV signature analysis revealed that tumors with simple signatures were TP53 wild type (TP53WT) but showed alterations in TP53 pathway members PPM1D and MDM4. Complex signatures were associated with direct aberrations in TP53, CDKN2A and RB1 early in tumor evolution and with later-occurring extrachromosomal amplicons. All pHGGs exhibited at least one simple-SV signature, but complex-SV signatures were primarily restricted to subsets of H3.3K27M DMGs and hemispheric pHGGs. Importantly, DMGs with complex-SV signatures were associated with shorter overall survival independent of histone mutation and TP53 status. These data provide insight into the impact of SVs on gliomagenesis and the mechanisms that shape them.


Assuntos
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/genética , Proteínas de Ciclo Celular/genética , Criança , Glioma/genética , Histonas/genética , Humanos , Mutação , Proteínas Proto-Oncogênicas/genética
17.
Cancer Res ; 82(17): 2980-3001, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35802025

RESUMO

Forkhead box R2 (FOXR2) is a forkhead transcription factor located on the X chromosome whose expression is normally restricted to the testis. In this study, we performed a pan-cancer analysis of FOXR2 activation across more than 10,000 adult and pediatric cancer samples and found FOXR2 to be aberrantly upregulated in 70% of all cancer types and 8% of all individual tumors. The majority of tumors (78%) aberrantly expressed FOXR2 through a previously undescribed epigenetic mechanism that involves hypomethylation of a novel promoter, which was functionally validated as necessary for FOXR2 expression and proliferation in FOXR2-expressing cancer cells. FOXR2 promoted tumor growth across multiple cancer lineages and co-opted ETS family transcription circuits across cancers. Taken together, this study identifies FOXR2 as a potent and ubiquitous oncogene that is epigenetically activated across the majority of human cancers. The identification of hijacking of ETS transcription circuits by FOXR2 extends the mechanisms known to active ETS transcription factors and highlights how transcription factor families cooperate to enhance tumorigenesis. SIGNIFICANCE: This work identifies a novel promoter that drives aberrant FOXR2 expression and delineates FOXR2 as a pan-cancer oncogene that specifically activates ETS transcriptional circuits across human cancers. See related commentary by Liu and Northcott, p. 2977.


Assuntos
Fatores de Transcrição Forkhead , Neoplasias , Adulto , Carcinogênese/genética , Proliferação de Células , Criança , Epigênese Genética , Fatores de Transcrição Forkhead/genética , Humanos , Masculino , Neoplasias/genética , Oncogenes/genética , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Proto-Oncogênicas c-ets/metabolismo , Ativação Transcricional
19.
Nat Cancer ; 3(5): 629-648, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35422502

RESUMO

Diffuse midline gliomas (DMGs) bearing driver mutations of histone 3 lysine 27 (H3K27M) are incurable brain tumors with unique epigenomes. Here, we generated a syngeneic H3K27M mouse model to study the amino acid metabolic dependencies of these tumors. H3K27M mutant cells were highly dependent on methionine. Interrogating the methionine cycle dependency through a short-interfering RNA screen identified the enzyme methionine adenosyltransferase 2A (MAT2A) as a critical vulnerability in these tumors. This vulnerability was not mediated through the canonical mechanism of MTAP deletion; instead, DMG cells have lower levels of MAT2A protein, which is mediated by negative feedback induced by the metabolite decarboxylated S-adenosyl methionine. Depletion of residual MAT2A induces global depletion of H3K36me3, a chromatin mark of transcriptional elongation perturbing oncogenic and developmental transcriptional programs. Moreover, methionine-restricted diets extended survival in multiple models of DMG in vivo. Collectively, our results suggest that MAT2A presents an exploitable therapeutic vulnerability in H3K27M gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Metionina Adenosiltransferase/metabolismo , Animais , Neoplasias Encefálicas/genética , Epigenoma , Glioma/genética , Histonas/genética , Metionina/genética , Camundongos
20.
J Pathol ; 256(2): 139-142, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34767264

RESUMO

Alterations in chromatin remodelling genes are increasingly recognised as drivers of undifferentiated malignancies. In atypical teratoid/rhabdoid tumours (ATRTs) and extracranial rhabdoid tumours (ECRTs), inactivation of SMARCB1 underlies >95% of cases. In the remainder, the culprit is another SWI/SNF family member, SMARCA4. By contrast, in small cell carcinoma of the ovary hypercalcaemic type (SCCOHT), SMARCA4 deficiency is by far the most common driver mechanism, while SMARCB1 alterations are rarely seen. It is unclear why alterations are so heavily weighted towards one or another subunit based on site alone, but both have become essential markers for the diagnosis and management of these undifferentiated lesions. Core SMARCA4-deficient undifferentiated malignancies share an aggressive clinical course and show an overlapping morphologic phenotype. In their study, Andrianteranagna, Cyrta and colleagues used DNA methylation and gene expression profiling to compare two subsets of SMARCA4-deficient malignancies diagnosed as SCCOHT and ECRT. Their work gives further insight into the subtle molecular spectrum of SMARCA4-deficient tumours, and their distinction from ATRT and ECRT with SMARCB1 inactivation. The characterisation of these molecular features is likely to play an important role in the future as we try to establish a clinically meaningful framework for the diagnosis and management of these lesions. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Carcinoma de Células Pequenas , Neoplasias Ovarianas , Tumor Rabdoide , Carcinoma Epitelial do Ovário/genética , Carcinoma de Células Pequenas/genética , DNA Helicases/genética , Metilação de DNA , Feminino , Humanos , Proteínas Nucleares/genética , Neoplasias Ovarianas/genética , Tumor Rabdoide/genética , Proteína SMARCB1/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...